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ul. Piotrowo 3A, PL-60-965 Poznań, Poland

Abstract. This paper presents a thorough performance analysis of sev-
eral variants of the feature-based visual navigation system that uses
RGB-D data to estimate in real-time the trajectory of a freely mov-
ing sensor. The evaluation focuses on the advantages and problems that
are associated with choosing a particular structure of the sensor-tracking
front-end, employing particular feature detectors/descriptors, and opti-
mizing the resulting trajectory treated as a graph of sensor poses. More-
over, a novel yet simple graph pruning algorithm is introduced, which
enables to remove spurious edges from the pose-graph. The experimental
evaluation is performed on two publicly available RGB-D data sets to
ensure that our results are scientifically verifiable.

1 Introduction

The introduction of compact and affordable RGB-D sensors, such like Microsoft
Kinect and Asus Xtion Pro Live, triggered a new wave of research on visual
SLAM (Simultaneous Localization and Mapping) [2, 12, 18] and VO (Visual
Odometry) [33, 38] systems that rely on the direct depth measurements. A RGB-
D VO system computes the sensor motion between the consecutive keyframes
(selected frames of the RGB-D data stream), and estimates the trajectory. It can
be paired with a back-end for post-processing of a pose-graph, whose vertices cor-
respond to the sensor poses, and whose edges represent constraints between these
poses [9]. A pose-based RGB-D visual navigation system can be implemented in
many different forms. However, the diversity of details in the published research
on both VO and pose-based visual SLAM makes it hard, or even impossible to
tell, which structure is the best one, and how the implementation of particular
components influences the performance.

The computer vision literature is rich in papers concerning performance eval-
uation and comparison of various algorithms for feature detection/description
[22, 36], including comparative studies in the context of visual navigation [30].
Also authors of some papers on the RGB-D navigation methods or benchmark-
ing, such like [12, 13, 17, 24] demonstrate the performance of their systems on
publicly available data, and in some cases include a comparison to other sys-
tems. However, to the extent of our knowledge, no study is available concerning
the influence of the particular design choices made to a RGB-D navigation sys-
tem on its performance. Among the few works that tackle this problem Endres
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et al. [12] evaluate only three different feature descriptors with their RGB-D
SLAM, while Strasdat [34] shows several variants of a large-scale visual naviga-
tion system, being however concerned mostly with the passive vision sensors.

Hence, this paper attempts to experimentally evaluate several configura-
tions of a pose-based RGB-D navigation system. We implemented a RGB-D
VO/SLAM in two main configurations, which respectively are based on the vi-
sual tracking of point features, or on the frame-to-frame matching of salient
visual features. These two front-ends are shown as pure frame-to-frame VO sys-
tems, then enhanced by local trajectory optimization, and finally, they are turned
into the full pose-graph SLAM systems by adding the loop closure detection and
global pose-graph optimization back-end. Moreover, we demonstrate how to im-
prove the precision of the pose estimates by pruning the pose-graph from the
edges that appear to be spurious. The experiments were performed using two
publicly available data sets: the well-known TUM RGB-D benchmark [35], and
the very recent ICL-NUIM dataset [17].

2 Pose-based RGB-D Visual Navigation System

As the main idea of this paper is to demonstrate the performance of several
configurations of the pose-based RGB-D navigation system, we divided our im-
plementation into the separate front-end, which is an implementation of the
VO concept, and the back-end implementing pose-graph optimization and the
loop closure. The front-end and the back-end are implemented in separate Linux
threads, and run asynchronous, exchanging only the necessary data: the pose-
graph, and the data regarding the features and local descriptors for loop closure.
Having the direct depth measurements from the Kinect or Xtion RGB-D sensor
we consider the 3-D-to-3-D feature correspondences for frame-to-frame motion
estimation [16]. Although combining the coordinates of the 2-D point features
with the depth information we obtain 3-D positions of the point features, we
do not keep these features in the system after computing the motion estimate.
Optimization of a map structure containing potentially thousands of point fea-
tures is time consuming, while advantages might be insignificant [13]. The lack
of persistent 3-D features makes it impossible to use the sliding window bundle
adjustment, implemented as in [11] or [23] to reduce the trajectory drift in the
front-end. We took instead the approach suggested in [12]: we try to reduce lo-
cally the trajectory drift by constructing a pose-graph from m last sensor poses
and estimate the motion constraints between the data frame attached to the cur-
rent pose and the remaining m frames. Then, we apply the graph optimization
provided by the back-end to this small pose-graph. This part of the approach,
called Windowed Optimization (WO), should not be confused with the windowed
bundle adjustment, because it is still purely pose-based and involves no features.

The front-end VO pipeline is proposed in two versions. The difference is in the
approach to establish the correspondences between the 2-D features in the RGB
images. As we want to estimate the motion between the first image Iv(k) and the
last image Iv(k+n) in a sequence of n images (n is considered to be small), we
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Fig. 1. Block diagram of the RGB-D visual navigation system in various configurations:
the tracking-based version with optional Windowed Optimization and Loop Closure
detection with pose-graph optimization (back-end) is depicted in (a), the matching-
based version front-end with the same optional modules is shown in (b)

can detect the point features only in Iv(k), and then track these points through
the k images (Fig. 1a), or we can simply match the detected local descriptors of
the features in Iv(k) and Iv(k+n) to obtain the correspondences (Fig. 1b). When
the correspondences between Iv(k) and Iv(k+n) are established, the depth data
are associated to the features resulting in two sets of matched 3-D points. The
parameters of transformation between these two point patterns are estimated
using a least squares estimation method [10, 37]. To make the transformation
estimation robust to the outliers resulting from imperfect tracking results or
wrong feature matches, the estimation procedure is embedded in the RANSAC
scheme [15].

The back-end for pose-graph optimization is based on the open-source g2o
software package for least square optimization [20]. This software takes a pose-
graph produced by the front-end as input, and performs a minimization of a
non-linear error function that is represented by this graph’s constraints (see sec-
tion 4). Hence, the back-end can compute a globally consistent trajectory of
the sensor, providing that all the constraints in the pose-graph (i.e. motion es-
timates) are correct [3]. We employ the g2o back-end in two roles: to optimize
small pose-graphs over a moving constant-length window in the Windowed Op-
timization procedure for local trajectory correction, and to optimize the global
pose-graph, representing the whole recovered trajectory. The global optimiza-
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tion occurs whenever a loop closure is discovered. The loop closures are detected
on RGB images by matching the frames belonging to poses that are positioned
far enough along the trajectory. If a significant (visual) similarity between these
frames is discovered on the basis of matching of the local descriptors a trans-
formation is computed between the frames, and added as a constraint to the
pose-graph.

3 Visual Odometry: the Front-end

3.1 Extraction and Management of Features

In the front-end we rely on feature-based methods for frame-to-frame motion es-
timation. Although the dense (appearance-based) methods are potentially more
precise [19, 33], as they use more data, this approach is more computation-
intensive, and prone to failures due to occlusions and sudden scene changes.
Thus, we focus exclusively on the feature-based approach, which is widely consid-
ered to be appropriate for real-time robotics applications [29]. The feature-based
VO requires to detect a set of keypoints, which should be salient, repeatable, lo-
calized precisely in the image, and computed as fast as possible. We employ and
test three point feature detectors: FAST [27], ORB [28], and SURF [5]. Using
SURF we expected good results, but were concerned about the real-time perfor-
mance of the system. On the other hand, FAST and ORB are more recent and
more computation efficient algorithms, but they are less robust [30]. The SURF
and ORB have their own feature descriptors, while the FAST detector is paired
in our system with the low-complexity binary BRIEF [7] descriptor. To make
the feature detection more robust we use two techniques that were proposed
in [24]: unsupervised clustering of the keypoints, and detection of features in
subimages. The detection of points in separate, slightly overlapping subimages
is a heuristic that helps to distribute the keypoints evenly on the image. How-
ever, this heuristic cannot deal with situations where many features are detected
on a small area in the image. To solve this problem the DBScan, a fast clustering
algorithm [14] is employed. Clusters of features are formed, and then they are
represented by maximum two points. This technique provides results similar to
the quadtree-based point detection method described in [34], but is much faster.

3.2 Matching, Tracking, and Motion Estimation

The core part of the front-end is motion estimation based on two sets of corre-
sponding point features, whose correspondences are determined either by match-
ing or by tracking. The matching approach relies on the fact, that corresponding
2-D features on two images have similar neighborhood, thus they should have
similar local descriptors, such like SURF, ORB, or BRIEF. The similarity of the
investigated descriptors is determined using the Euclidean norm for SURF, or
the Hamming distance for the binary descriptors BRIEF and ORB. The imple-
mentation of matching involves rejecting matches if multiple descriptors from
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the second image Iv(2) correspond to the descriptor of the same feature from the

first image Iv(1), and accepting correspondences only if the j-th descriptor Ijv(2)
from the second image is the best match for the i-th descriptor Iiv(1) from the

first image, and at the same time the descriptor Iiv(1) is determined as the best

match for descriptor Ijv(2).

In comparison to matching, the tracking does not need the description of
features, and performs detection only on the subset of images. The idea of track-
ing is to detect features at the keyframe, and then looking for the position of
this feature in the new image by searching locally. In our system, the tracking
is performed using a pyramid implementation [6] of the Lucas-Kanade optical
flow algorithm [4]. Tracking is initialized with points from the FAST detector,
which is more efficient than the usual Shi-Tomasi from [31]. The maximum num-
ber of tracked features in our experiments was 500. Tracking is computationally
less demanding than matching using classic descriptors, such like SIFT [21] or
SURF. The VO front-end tracks features over a number of images of the RGB-
D sequence between the two keyframes that are processed with depth images.
When the number of successfully tracked features falls below a given thresh-
old or the maximum allowed number of the RGB frames in tracking is reached
(max. n=5), the transformation between the keyframes is computed within the
RANSAC scheme.

The RANSAC is used to randomly select 3 pairs of points from the set of
tracked or matched features and to estimate the 3-D transformation using the
Umeyama algorithm [37]. In every iteration, a model transformation is computed
and evaluated. The number of RANSAC iterations is estimated using a simple
probabilistic model [8] to improve speed. When the RANSAC-based model search
is finished, the transformation is re-estimated from all inlier-pairs. Also, if the
number of inliers is high, the iterative model correction is applied by rejecting
the inliers that are the least probable within the model estimated so far [26].

4 Pose-based Optimization: the Back-end

4.1 Pose-graph Optimization

The back-end of our system is based on g2o – a general framework for graph
optimization [20]. We store each measurement between the robot/sensor poses
in a graph (Fig. 2). Each vertex vi in the graph represents a sensor pose. As
motivated before, we do not keep point features in the graph structure. The
edges in the graph represent measurements between two vertices. Measurement
Mij represents a 3-D transformation (translation and rotation) between poses vi
and vj . The quality of the measurements is represented by an information matrix
Ωij (inverse of a covariance matrix), which can be obtained by propagating
uncertainty from the measurement model of the RGB-D sensor [25], or set as
identity matrix if equal uncertainty of all 3-D transformations is assumed.

The input variables, which are provided for the graph optimization are mea-
surements (edges of the graph). The graph optimization returns poses of the
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Fig. 2. Graph representation of the pose-based SLAM

sensor (vertices of the graph) which correspond to the trajectory of the sensor.
The optimization is possible if at least one vertex has at least two incoming
edges. The Windowed Optimization procedure provides additional edges to the
graph. With this procedure we can add relations between more distant vertices
of the graph (edge M13 in Fig. 2). We can also add new measurements whenever
the robot returns to previously visited places. Loop closure procedure allows to
close the graph and improves the estimation of the sensor pose (edge Mn2 in
Fig. 2). The graph optimization procedure minimizes the global error E:

E =
∑
ij

ẽT
ijΩij ẽij , (1)

where ẽ is a vector, which determines the discrepancy between the current vertex
pose and the measurements. Graphical representation of error computation for
each edge is presented in Fig. 2. The error eij is computed as:

eij = M−1
ij Tij , (2)

where Tij is the estimated transformation between the considered vertices.
Defining the poses of the vertices vi and vj in the reference coordinate system
as VOi and VOj , respectively, we can rewrite (2):

eij = M−1
ij V−1

OjVOi. (3)

Eventually, the homogeneous transformation eij is parametrised to the vector ẽ
and used for optimization.

4.2 Graph pruning

Despite of procedures in the front-end, which remove wrong matches and ensure
robust motion estimation, some wrong transformations might be added to the
graph. These outlier constraints (edges) influence the optimization results and
output trajectory. While the recent results show that the back-end can be made
robust to outlier constraints [1], we simply detect such edges and remove them
from the pose-graph. For graph pruning we use the error value χ2 (goodness of
fit) provided by g2o for each estimated edge: χ2 = ẽT

ijΩij ẽij .
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Algorithm 1: Local Adaptive Pruning procedure

Data: praph G
Result: pruned graph Gpruned

1 continue:=1;
2 while (continue=1) do
3 optimizeGraph(); continue:=0;
4 for i:=1:1:n do
5 edgeSet:= FindIncomingEdges(vi);
6 outlier:= FindOutlier(edgeSet);
7 if outlier != singleOutgoingEdge then
8 RemoveEdge(outlier);
9 continue = 1;

10 end

11 end

12 end

We applied two approaches to remove outlier edges. In the simple approach
we use the χ2 test globally. The graph optimization and graph pruning stages
are running alternately. After each optimization cycle we remove edges for which
the χ2 value is greater than a fixed threshold related to the χ2 distribution (2.0
is used, which corresponds to 0.92 probability). If the vertex contains more than
one incoming edge with χ2 bigger than threshold we remove only the worst
one in the single iteration. We repeat the pruning and optimization sequence
until all remaining edges have the χ2 value smaller than the selected threshold.
The Local Adaptive Pruning procedure (Algorithm 1) exploits the locality of the
pose-graph – we have observed that the incorrect constraints (edges) in the graph
are usually the ones that “pull out” the given vertex in another direction than
other edges incoming to the given vertex, having therefore a much worse χ2 value.
The adaptive pruning re-runs optimization until all outlier edges are removed.
We search over the whole pose-graph. For each vertex vi we find all incoming
edges (FindIncomingEdges procedure). The procedure FindOutlier detects
an outlier within the set of edges incoming to the given node. To this end, this
procedure computes the median value χ2

median for all the incoming edges of the
given node (edgeSet). The edge that has the biggest χ2/χ2

median value, and its χ2

is at least p-times worse than the median is considered an outlier. We determined
experimentally that p=10 suits best for most of the analysed data sets and all
the tested configurations of the system. The procedure RemoveEdge deletes
the outlier edge only if its predecessor vertex in the pose-graph has more than
one outgoing edge.

5 Experimental Results

5.1 Experiments and Data Sets

The aim of our experiments was to determine the properties of several config-
urations of the RGB-D visual navigation system. These configurations can be
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Fig. 3. Example recovered trajectories with the ATE error: trajectories ICL-NUIM
living room/2 estimated using the Matching+WO FAST-BRIEF with LC variant
(a), and the Matching+WO SURF with LC variant (b) show a dramatic difference in
accuracy, simple Tracking VO performs well for the TUM fr1/room sequence (c)

divided in two main groups: the VO systems, either frame-to-frame or using the
Windowed Optimization (WO), and pose-based SLAM configurations, with the
Loop Closure (LC) discovery and global optimization of the pose-graph. Note
that the WO procedure always uses the same detector/descriptor pair as the
main VO pipeline. The tracking-based variant was tested with the LC using
three different detector/descriptor pairs, as in tracking there is no possibility to
re-use the descriptors and they have to be computed for LC.

The experiments were performed using the RGB-D data from two data sets:
the TUM RGB-D data set [35], and the recent ICL-NUIM data set [17]. The
TUM RGB-D data set, containing data acquired from either the Kinect or Xtion
sensor in a scenario of indoor visual navigation, was used to evaluate a RGB-D
SLAM system [12]. The ICL-NUIM data set contains RGB-D sequences from a
synthetic environment with perfect ground-truth poses of the sensor. The ren-
dered data is free from motion blur and artifacts, hence makes it easier to isolate
the causes of failures. The perfect ground-truth is important when testing sys-
tems that achieve very small pose errors. The authors of [17] also tested several
RGB-D visual navigation solutions on their data set, and their results can be
directly compared to the performance of our systems. All experiments shown in
this paper were conducted on a standard laptop computer with 2.5GHz CPU
and 8GB RAM. We used the evaluation tools provided with the TUM RGB-D
data set. The error metric mostly used is the Absolute Trajectory Errors (ATE),
as it shows the difference between the recovered trajectory of the sensor and
the ground truth trajectory (Fig. 3). The Relative Pose Error (RPE) is used to
illustrate the local drift of the VO front-end.

5.2 Performance of the VO front-end

From the results in Tab. 1, it can be observed that matching using the FAST-
BRIEF (F-B) detector/descriptor pair definitively yields the biggest errors among
the compared methods. When taking into account the RPE results, it is obvious
that matching based of FAST-BRIEF performs so poorly not because of a single
mismatch, but also due to the low precision of the motion estimation for each
frame-to-frame increment.
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Table 1. Trajectory estimation results for various configurations of the visual naviga-
tion front-end for the TUM fr1/room dataset

navigation system config. Frame-to-Frame Windowed Optimization
front-end type, ATE RPE Orient. FPS ATE RPE Orient. FPS
detector & descriptor RMSE RMSE RMSE RMSE RMSE RMSE

[m] [m] [deg.] [Hz] [m] [m] [deg.] [Hz]

Tracking 0.191 0.026 1.631 33.97 0.923 0.121 6.37 30.68
Matching FAST-BRIEF 1.194 0.052 5.179 50.17 1.042 0.056 4.755 29.57
Matching ORB 0.507 0.031 1.64 47.64 0.366 0.026 1.243 32.25
Matching SURF 0.201 0.017 1.42 20.76 0.206 0.019 0.864 17.16

The lowest ATE error (lowest errors are shown in bold in all tables) for
the TUM fr1/room dataset (1362 frames, ground-truth trajectory 15.989m) is
obtained by pure tracking of FAST features, but this configuration results in
bigger error when the WO is enabled. This is believed to be a result of the fact,
that in the case of tracking the additional constraints introduced by WO are
based on the features positions that have been already used when computing the
regular frame-to-frame motion estimates. Therefore, the additional graph edges
are redundant to the already existing edges in the simple tracking solution,
and may only have a negative impact on the achieved results. The matching
using SURF results in less motion drift when compared to matching with ORB,
but both methods improve trajectory estimates when Windowed Optimization is
used. What is worth noticing, are the framerates (FPS) of each variant The ORB
presents similar, fast working speed to the FAST-BRIEF (even 30 Hz with the
WO), with better results probably due to the ORB detection being performed
on the image pyramid. The tracking has similar working speed (30 Hz) with and
without WO. The slowest of all the tested variants is matching based on SURF,
which due to multiscale, complicated detection, floating point type descriptors
and matching based on the Euclidean norm results in system operating with the
maximal frequency of approx. 20 Hz.

Table 2. Trajectory estimation results for various configurations of the visual naviga-
tion front-end for the TUM fr1/desk dataset

navigation system config. Frame-to-Frame Windowed Optimization
front-end type, ATE RPE Orient. FPS ATE RPE Orient. FPS
detector & descriptor RMSE RMSE RMSE RMSE RMSE RMSE

[m] [m] [deg.] [Hz] [m] [m] [deg.] [Hz]

Tracking 0.441 0.052 3.558 34.8 0.447 0.064 4.158 31.57
Matching FAST-BRIEF 0.659 0.131 9.425 49.35 0.693 0.11 8.249 29.14
Matching ORB 0.408 0.033 2.672 48.43 0.073 0.023 1.541 35.3
Matching SURF 0.200 0.027 1.882 20.38 0.079 0.022 1.378 18.46

Experiments evaluating the same variants were also performed for the TUM
fr1/desk dataset (presented in Tab. 2) and for ICL-NUIM office/0 dataset
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(presented in Tab. 3). Similarly to the results presented in Tab. 1, the tracking
results in lower error when local optimization is not used. Also, for the data
sets in Tab. 2 and Tab. 3, the matching based on FAST-BRIEF pair results
in ATE and RPE errors that are much higher than the respective results for
other variants. With the maximum frequency of FAST-BRIEF similar or worse
than ORB, this proves that the FAST-BRIEF pair is unreliable, and should
not be used in RGB-D visual odometry. The Windowed Optimization used with
matching-based solutions with SURF or ORB results in slight improvements of
the trajectory estimates. What is interesting, both solutions achieve similar ATE,
which is below 8 cm for the TUM fr1/desk dataset (613 frames, ground-truth
trajectory 9.263m) and below 3.3 cm for the ICL-NUIM office/0 sequence (1510
frames, ground-truth trajectory 6.52m) with the perfect ground-truth. These
results compared to the results presented in [12, 13, 17] prove that even without
the full SLAM optimization some variants of the proposed navigation system
achieve similar or better results than the state-of-the-art solutions.

Table 3. Trajectory estimation results for various configurations of the visual naviga-
tion front-end for the ICL-NUIM office/0 dataset

navigation system config. Frame-to-Frame Windowed Optimization
front-end type, ATE RPE Orient. FPS ATE RPE Orient. FPS
detector & descriptor RMSE RMSE RMSE RMSE RMSE RMSE

[m] [m] [deg.] [Hz] [m] [m] [deg.] [Hz]

Tracking 0.167 0.012 1.904 22.55 0.629 0.076 1.664 20.5
Matching FAST-BRIEF 0.626 0.021 2.136 15.23 0.588 0.022 3.354 16.55
Matching ORB 0.047 0.009 0.469 25.27 0.033 0.007 0.408 24.05
Matching SURF 0.039 0.007 0.445 13.08 0.030 0.006 0.41 15.84

5.3 Influence of the Loop Closure

The trajectory recovered by the VO system using the frame-to-frame motion
estimation has a drift, which can be decreased by the WO procedure, but will
still grow with time, as there are no constraints on the trajectory that enforce
the global consistency. A possibility to decrease drift estimation arises, whenever
the robot/sensor re-visits already explored areas. To detect these situations a
simple loop closure technique is used, which operates in the back-end. The results
of evaluated versions with additional loop closure are presented in Tab. 4 and
Tab. 5. Due to the previously presented poor results for Tracking+WO, the loop
closure module was added to the tracking solution without local optimization of
the pose-graph. As expected, the addition of LC results in the decreased ATE
and RPE. In some cases, the loop closure makes these systems very precise with
the ATE errors below 5 cm for the TUM fr1/desk and approx 10 cm for the
bigger environment in the TUM fr1/room. For both of these data sets, the best
results are obtained by the system variants based on matching with ORB and
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SURF, with the ORB-based version being however almost two times faster than
the SURF-based one. A slightly higher error is observed for Tracking with LC,
which has similar speed to the ORB-based matching. The variants based on the
FAST-BRIEF perform poorly with an exception for Tracking with LC based on
FAST-BRIEF for the TUM fr1/room, but even in that case the system achieves
higher ATE than the similarly configured systems based on ORB or SURF.

Table 4. Trajectory estimation results for various configurations of the visual naviga-
tion front-end with the g2o back-end optimization for the selected TUM datasets

navigation system config. TUM fr1/room TUM fr1/desk

front-end type, ATE RPE Orient. FPS ATE RPE Orient. FPS
detector & descriptor RMSE RMSE RMSE RMSE RMSE RMSE
all with g2o back-end [m] [m] [deg.] [Hz] [m] [m] [deg.] [Hz]

Tracking with LC F-B 0.165 0.026 1.596 35.55 8.669 8.654 69.729 35.3
Tracking with LC ORB 0.113 0.024 1.383 35.64 0.079 0.033 2.54 33.62
Tracking with LC SURF 0.114 0.024 1.431 35.47 0.247 0.037 2.869 35.44
Matching+WO F-B with LC 1.042 0.056 4.755 29.57 5.802 5.027 56.019 29.31
Matching+WO ORB with LC 0.107 0.026 1.258 32.35 0.055 0.023 1.491 35.19
Matching+WO SURF with LC 0.103 0.019 0.837 16.75 0.049 0.021 1.356 18.47

On the synthetic ICL-NUIM data sets the lowest errors are for Tracking
with LC based on SURF. Due to the fact, that the time allocated to the LC and
global pose-graph optimization is constrained by the time of the frame-to-frame
matching (the threads have to synchronize at each keyframe), the whole system
operates faster (20 Hz), even with the relatively slow SURF detector/descriptor.
The best ATE results equal to 2 cm for Tracking with the ORB-based LC for the
ICL-NUIM office/0, and 2.1 cm for Tracking with SURF-based LC for the ICL-
NUIM living room/2 (882 frames, ground-truth trajectory 8.42m) demonstrate
that in the absence of motion blur and image artifacts a simple, but carefully
implemented RGB-D visual navigation system can achieve better results than
most of the solutions compared in [17].

5.4 Pruning of the Pose-Graph

Unfortunately, there exist situations, where the constrains from loop closure have
a negative influence on the performance of the pose-based SLAM. Even a single
outlier constraint can have an arbitrary large impact on the graph optimization
which is based on the least-squares principle. However, contrary to the situation
in the filtration-based SLAM systems [32], such a wrong measurement can be
removed, and then the pose-graph can be re-estimated in a correct form. There-
fore, the influence of the proposed pose-graph pruning technique is demonstrated
in Tab. 6 and Tab. 7.

The back-end optimization (g2o) improves the estimate of the trajectory by
reducing the error (1) for the whole graph. Results obtained with one of the
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Table 5. Trajectory estimation results for various configurations of the visual naviga-
tion front-end with the g2o back-end optimization for the selected ICL-NUIM datasets

navigation system config. ICL-NUIM office/0 ICL-NUIM living room/2

front-end type, ATE RPE Orient. FPS ATE RPE Orient. FPS
detector & descriptor RMSE RMSE RMSE RMSE RMSE RMSE
all with g2o back-end [m] [m] [deg.] [Hz] [m] [m] [deg.] [Hz]

Tracking with LC F-B 0.398 0.012 2.473 22.54 0.051 0.007 0.431 21.93
Tracking with LC ORB 0.020 0.009 0.671 22.45 0.067 0.013 0.518 20.04
Tracking with LC SURF 0.021 0.01 0.964 22.65 0.021 0.006 0.399 21.82
Matching+WO F-B with LC 0.588 0.022 3.354 16.55 0.912 0.035 2.901 15.1
Matching+WO ORB with LC 0.015 0.007 0.415 18.65 0.089 0.009 0.341 23.12
Matching+WO SURF with LC 0.062 0.057 1.174 12.12 0.036 0.006 0.303 14.35

Table 6. Pose graph pruning results for various configurations of the visual navigation
front-end with or without back-end optimization for the TUM fr1/room dataset

navigation system config. Simple pruning – χ2 test Local adaptive pruning
front-end type, ATE RPE Orient. ATE RPE Orient.
detector & descriptor, RMSE RMSE RMSE RMSE RMSE RMSE
back-end type [m] [m] [deg.] [m] [m] [deg.]

Tracking+WO 0.917 0.114 6.17 0.989 0.115 6.17
Matching+WO F-B 1.065 0.056 4.87 1.043 0.055 4.87
Matching+WO ORB 0.365 0.025 1.24 0.341 0.025 1.23
Matching+WO SURF 0.285 0.019 0.86 0.295 0.019 0.84
Tracking with LC F-B 0.164 0.025 1.59 0.165 0.025 1.59
Tracking with LC ORB 0.113 0.024 1.38 0.113 0.024 1.40
Tracking with LC SURF 0.113 0.024 1.43 0.113 0.024 1.43
Matching+WO F-B with LC 0.648 0.099 6.44 0.703 0.106 8.03
Matching+WO ORB with LC 0.055 0.022 1.49 0.048 0.022 1.49
Matching+WO SURF with LC 0.048 0.021 1.35 0.039 0.021 1.29

best variants of our navigation system (Matching+WO ORB with LC) for the
ICL-NUIM office/0 are presented in Fig. 4. Before optimization the obtained
trajectory is slightly distorted. After optimization and pruning the trajectory is
smooth and very close to the ground truth trajectory.

In Fig. 5 we present some properties of the pruning method. Fig. 5a presents
the optimized trajectory for the ICL-NUIM office/0 data set, obtained with
the Matching+WO SURF with LC variant of the system. (ATE RMSE error is
about 6 cm). The same trajectory optimized with pruning is presented in Fig. 5b
(ATE error is reduced to 1.5 cm). Incorrect matches introduced by the Loop
Closure procedure moved the vertex indicated by the arrow no. 1 in Fig. 5a
to a wrong position. The erroneous measurement is detected by the pruning
procedure and removed from the graph. This situation corresponds to the initial
value of the RPE error presented in Fig. 5c. The RPE error is significantly
reduced after pruning. The presented pruning procedure removes also incorrect
edges introduced sporadically by the Windowed Optimization procedure (due
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Table 7. Pose graph pruning results for various configurations of the visual navigation
front-end with or without back-end optimization for the ICL-NUIM office/0 dataset

navigation system config. Simple pruning – χ2 test Local adaptive pruning
front-end type, ATE RPE Orient. ATE RPE Orient.
detector & descriptor, RMSE RMSE RMSE RMSE RMSE RMSE
back-end type [m] [m] [deg.] [m] [m] [deg.]

Tracking+WO 0.527 0.048 1.26 0.715 0.090 1.80
Matching+WO F-B 0.584 0.021 2.11 0.586 0.020 2.15
Matching+WO ORB 0.032 0.006 0.40 0.028 0.006 0.40
Matching+WO SURF 0.030 0.006 0.41 0.029 0.006 0.40
Tracking with LC F-B 0.398 0.012 2.47 0.398 0.012 2.47
Tracking with LC ORB 0.020 0.009 0.67 0.021 0.008 0.46
Tracking with LC SURF 0.021 0.009 0.96 0.023 0.009 1.07
Matching+WO F-B with LC 0.588 0.022 3.35 0.583 0.020 3.10
Matching+WO ORB with LC 0.015 0.007 0.41 0.014 0.006 0.41
Matching+WO SURF with LC 0.061 0.057 1.17 0.014 0.006 0.41

a b

Fig. 4. Trajectory before (a) and after (b) g2o optimization and pose-graph pruning.
Matching+WO ORB with LC, ICL-NUIM office/0 data set

to mismatching descriptors). The part of the trajectory indicated by arrow no.
2 in Fig. 5a is presented as details of the pose-graph in Fig. 5d. The procedure
removes edges which do not fit to the obtained path and improves the final
estimate of the poses.

6 Conclusions

This paper presents the comparison of several configurations of a relatively sim-
ple pose-based visual navigation system using the RGB-D data. The experimen-
tal results clearly show that there are significant differences in the performance
of the considered variants of the visual navigation system, even though all these
variants are based on the same general concept, and they share many critical
components. Both structures of the VO, based on tracking and matching, re-
spectively have proven to be suitable for the front-end of RGB-D SLAM system.
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Fig. 5. Pruning properties presented for the Matching+WO SURF with LC on the ICL-
NUIM office/0 data set: trajectory obtained after g2o optimization (a), trajectory
obtained after g2o optimization and pruning (b), RPE error before and after pruning
(c), details of the pose-graph with removed edges (d)

The tracking-based VO pipeline is simple, fast and precise, but only if it is feed
by good quality images at a high frame rate. On the other hand, the performance
of the matching-based version critically depends on the used detector-descriptor
pair. The performance of the ORB-based version was comparable or even slightly
better than the performance of the tracking approach, with regard to both the
precision and speed. An advantage of the matching-based version of the front-end
is also the possibility to improve the trajectory by local pose-graph optimization,
which turned out to be impossible with tracking. However, other variants based
on matching did not perform so well, with the SURF-based version being the
slowest one, and the FAST-BRIEF variant producing unacceptable trajectory
errors. The ability to remove wrong loop closure constraints is very important
to the pose-based RGB-D SLAM, as shown by our pose-graph pruning results.
In the further research we plan to test robust estimation-based approaches to
the outlier removal problem [1], and investigate how to efficiently include the
point features in the optimization.
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19. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras.
In: Proc. IEEE Int. Conf. on Robotics & Automation, Karlsruhe, (2013) 3748–3754
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